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Abstract
Ultraviolet B radiation (UVB) is required by many vertebrates to stimulate the photobiochemical synthesis
of vitamin D. Vitamin D plays many important roles in the body, including assisting in the absorption of
calcium at the level of the intestines. Deficiencies in vitamin D can lead to the development of nutritional
disease. Leopard geckos (Eublepharis macularius) are naturally nocturnal to crepuscular; therefore, it is
not known whether they benefit from UVB radiation. The purpose of this study was to measure 25-
hydroxyvitamin D3 concentrations in leopard geckos exposed to short duration UVB light. Twelve adult,
male leopard geckos were used for this study. Blood samples were collected from the cranial vena cava
to establish baseline 25-hydroxyvitamin D3 concentrations. Once the baseline samples were collected,
the animals were randomly divided into two groups. The animals provided UVB radiation were exposed
to non-UVB producing light for 12 h and UVB for 2 h, whereas animals in the control group only received
non-UVB producing light for 12 h. Exposure to the UVB light occurred for 2 h per day: 1 h at 0600 h and 1 h
at 1800 h to mimic dawn and dusk, respectively. An additional blood sample was collected 30 days after
the initiation of UVB exposure. There was a significant difference (F¼ 9.7, P¼ 0.012) in 25-hydroxyvitamin
D3 concentrations between the two groups, with UVB exposed geckos having significantly higher
concentrations. The results of this study demonstrate that short duration exposure to UVB light can lead to
increased circulating 25-hydroxyvitamin D3 concentrations in leopard geckos.
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Introduction

Because of their relative ease of care, longevity, and

manageable size, leopard geckos (Eublepharis macularius)

have become an attractive choice for reptile enthusiasts

across different experience levels. Native to the rocky

scrubland and desert regions of Pakistan, Afghanistan,

Iran, and India, leopard geckos are a nocturnal and

crepuscular species that spend much of the daylight hours

concealed in burrows and damp crevices (Thorogood and

Whimster, 1979). Leopard geckos are an insectivorous

species that likely consume a varied diet in the wild.

Unfortunately, in the captive setting, metabolic distur-

bances, such as nutritional secondary hyperparathyroidism

(NSHP), are common in leopard geckos because the prey

insects that are available commercially are deficient in

calcium and vitamin D and disproportionately high in

phosphorous. Recommendations for most insectivore diets

include supplementing these prey items by offering an

appropriate gut-loading diet or dusting them with a
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calcium-vitamin powder. However, because of discrepan-

cies in the nutritional content of these gut-loading diets and

the variable time before prey items are ingested, this form

of oral supplementation may be unreliable. Further, most

of these regimens emphasize calcium supplementation but

overlook the importance of vitamin D in calcium regula-

tion.

Vitamin D is a fat-soluble hormone that can be obtained

from the diet, through photobiochemical synthesis follow-

ing exposure to ultraviolet B (UVB) light (280–320 nmol),

or a combination of both (Webb and Holick, 1988; Webb

et al., 1989; Allen et al., 1994). Vitamin D is vital to a wide

array of physiologic actions within the body, most notably

calcium homeostasis and metabolism (Webb and Holick,

1988; How et al., 1994). It has also been shown to impact

reproductive success in species across taxa (Ferguson et al.,

2002; Langerwerf, 1994; Narbaitz and Tsang, 1989).

Without adequate vitamin D stores, uptake of ingested

calcium from the intestines is impaired. This can lead to

hypocalcemia, even in the face of calcium over supplemen-

tation. When circulating calcium concentrations drop

below a certain threshold, a compensatory release of

parathyroid hormone causes calcium to be released from

bone. This loss of bone matrix can produce the clinical

signs associated with NSHP, one of the most common

nutritional diseases reported in captive reptile species

(Laing and Fraser, 1999; Mader, 2005). Although it is

widely accepted that many diurnal species can use

ultraviolet supplementation to promote the photobiochem-

ical conversion of precursors into vitamin D3, much less is

known about the requirements of nocturnal or crepuscular

species (Bernard et al., 1991; Allen et al., 1994; Laing and

Fraser, 1999; Wright, 2008). Although many of these

species are successfully kept in captivity without UVB

supplementation, the high prevalence of NSHP in captive

insectivores, including leopard geckos, may correspond to a

deficiency in vitamin D3 and deserves further investigation.

The purpose of this study was to determine whether

leopard geckos exposed to short duration UVB light would

experience a rise in their 25-hydroxyvitamin D3 concentra-

tions. The specific hypotheses for this study were as

follows: 1) leopard geckos exposed to UVB radiation for

two hours per day would have higher serum 25-hydroxy-

vitamin D3 concentrations than leopard geckos not

exposed to UVB; and 2) that weights of these animals

would not vary significantly over time between or within

the UVB exposed and nonexposed groups.

Materials and Methods

This study was performed in accordance with the

regulations set forth by the Institutional Animal Care and

Use Committee at the University of Illinois (protocol 14-

264). Twelve adult male leopard geckos obtained from a

pet store (Sailfin Pets, Champaign, IL) were used for this

study. Males were used to limit the potential effect of sex

on the results because of sample size. The leopard geckos

were housed individually in 25 cm 3 34 cm 3 13 cm (15

quart) Sterilite containers (Sterilite Corporation, Town-

send, MA). A circular opening was cut into the lid, and

galvanized wire was secured to the opening to prevent

escape and ensure passage of UVB radiation into the

container. Each container was outfitted with a water dish,

hide box, and brown-paper lining to facilitate cleaning. The

ambient temperature and humidity were kept constant at

29.48C (858F) and 39%, respectively. All of the geckos were

offered crickets (Acheta domestica) on a daily basis. The

number of crickets fed was equivalent to approximately 2%

of the geckos’ body weight. The crickets were not gut-

loaded for this study to reduce the impact of any oral

vitamin D supplementation. Previous unpublished research

by one of the authors (MAM) has found vitamin D

concentrations in these nonsupplemented crickets to be

below detection limits.

The 12 geckos were allowed a 72 h acclimation period

before the initial blood sample was collected. Geckos were

placed, one at a time, into a gas-anesthetic induction

chamber (20 L glass tank) and anesthetized using 5%

isoflurane gas (IsoFlo; Abbott Laboratories, North Chica-

go, IL) and 2 L/min oxygen flow. Once the geckos lost their

righting reflex, they were removed from the anesthetic

chamber, and a blood sample was collected from the

cranial vena cava (day 0). Baseline and follow-up blood

samples were always collected between 1600 and 1800 h.

Blood samples were stored in serum separator microtainer

tubes (Becton-Dickinson, East Rutherford, NJ) and

centrifuged within one hour of collection. Serum was

harvested and frozen at �808C (�1128F) until being

analyzed.

After the initial blood samples were collected, the geckos

were randomly assigned to two groups using a random

number generator (random.org). Group one (n ¼ 6)

represented the treatment group, and included the geckos

that would be exposed to UVB light. Group 2 (n ¼ 6)

represented the control group and included the geckos that

would receive non-UVB producing light. Fluker Farm

(Port Allen, LA) 23 watt compact fluorescent bulbs were

placed over the wire tops of the geckos from group 1. A

timer was connected to the lights so that the lights would

turn on for one hour in the morning (0600 h) and one hour

in the evening (1800 h), to mimic a crepuscular exposure

pattern. All geckos were exposed to ambient non-UVB

producing fluorescent lighting for 12 h per day.

Leopard geckos were monitored once daily for position

within enclosure and whether they underwent an ecdysis

cycle. Geckos were weighed weekly, with measurements

rounded to the nearest 0.1 g. Ultraviolet radiation was also

measured once weekly (1800 h) using a radiometer-

photometer (Solarmeter 6.2; Solar Light Co., Inc., Glen-

side, PA) at a distance of 12 cm from the bulb surface from

three different sites within the enclosure: directly through

the mesh under the bulb and at each end of the enclosure.

UV readings were taken in triplicate and the arithmetic

mean calculated.

Each group was maintained under the described study

conditions for 30 days. A second blood sample was
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collected from each gecko on day 30. Collection, process-

ing, and analysis of the blood samples were identical to that

described for day 0. Once all samples were collected, they

were transported on frozen gel packs to the Michigan State

University Diagnostic Center for Population and Animal

Health (Lansing, MI) for testing. A radioimmunoassay was

performed to determine serum concentrations of 25-

hydroxyvitamin D3 (Holick, 1990; Laing and Fraser,

1999; Acierno et al., 2006, 2008).

The distribution of the data was evaluated using the

Shapiro-Wilk test, skewness, kurtosis, and q-q plots.

Because the data were normally distributed, a parametric

test was selected. A general linear model for repeated

measures was used to analyze the data, with gecko as the

random variable and group and time as fixed variables.

SPSS 22.0 (IBM Statistics, Armonk, NY) was used to

analyze the data. A P , 0.05 was used to determine

statistical significance.

Results

There was a significant difference in 25-hydroxyvitamin

D3 concentrations over time (F ¼ 12.99, P ¼ 0.006) and

between groups (F ¼ 9.72, P ¼ 0.012). Leopard geckos

exposed to UVB had significantly higher 25-hydroxyvita-

min D3 concentrations than those not provided UVB light

(Table 1). There was no significant difference in body

weight within or between groups (F ¼ 2.7, P ¼ 0.103). All

geckos, irrespective of light exposure, showed a strong

preference for staying within a hide box whenever

observed; however, this was not unexpected as they were

only evaluated during the daytime. It is important to note

that both groups of geckos were found to be outside of

their shelters during the study; therefore, we know direct

exposure did occur in the UVB group. None of the geckos

produced a shed during the 30 day trial. The UVB

radiation measurements for the treatment group were 12–

52 lwatts/cm2; the higher end of the range was under the

bulb and the lower end of the range at the sides of the

enclosure.

Discussion

The results of this study confirm that leopard geckos

exposed to short-duration (2 h) UVB radiation are capable

of significantly increasing their 25-hydroxyvitamin D3

concentrations over time compared with control geckos

not exposed to UVB but fed a similar diet. This is an

important finding because it further affirms that leopard

geckos can use UVB radiation to photobiochemically

generate 25-hydroxyvitamin D3 and that it can be done

using limited UVB exposure versus a more common 12 h

exposure (Wangen et al., 2013).

To date, the majority of the research evaluating the

effects of UVB radiation on reptiles has focused on diurnal

species (Allen et al., 1999; Laing and Fraser, 1999; Carman

et al., 2000; Laing et al., 2001; Ferguson et al., 2003, 2005;

Acierno et al., 2006, 2008; Oonincx et al., 2010; Selleri and

Di Girolamo, 2012). Although originally focused on lizards

(Allen et al., 1999; Laing and Fraser, 1999; Carman et al.,

2000; Laing et al., 2001; Ferguson et al., 2003, 2005;

Oonincx et al., 2010), more recent examples in chelonians

(Acierno et al., 2006; Selleri and Di Girolamo, 2012) and a

snake species (Acierno et al., 2008) also suggest that UVB

can play an important role in the circulating concentrations

of 25-hydroxyvitamin D3 in these reptiles too. However, it

should not be assumed that UVB light is a requirement for

vitamin D regulation in all diurnal vertebrates, as dogs and

cats do not use this method for acquiring vitamin D and a

recent study in captive ball pythons (Python regius) found

that UVB had no impact on circulating 25-hydroxyvitamin

D3 concentrations in that species (How et al., 1994; Hedley

and Eatwell, 2013). These findings re-affirm that we must

evaluate each species separately to determine how they

acquire vitamin D such that, when in captivity, we can

provide appropriate husbandry and care to minimize the

likelihood for iatrogenic disease (e.g., NSHP).

Evolutionary adaptations appear to be in place for some

species to maximize their ability to synthesize vitamin D

following limited exposure to sunlight. Several studies have

shown that crepuscular and nocturnal reptiles may have a

more sensitive and efficient mechanism for converting UVB

to vitamin D (Carman et al., 2000; Ferguson et al., 2005).

When comparing two species of Jamaican anoles, the

shade-dwelling species had a higher rate of photoconver-

sion than the basking species, while simultaneously

consuming less dietary vitamin D (Ferguson et al., 2005).

Upon exposure to ultraviolet radiation, the nocturnal/

crepuscular house gecko (Hemidactylus turcicus) was also

shown to similarly convert ultraviolet radiation more

effectively than the diurnal Texas spiny lizard (Sceloporus

olivaceus) (Carman et al., 2000). Further, the latter study

also found evidence suggesting behavioral regulation by the

house gecko to maximize sun exposure by emerging earlier

(if west-facing) or remaining active longer (if east-facing).

Behavioral regulation has been proposed as a means of self-

regulating circulating vitamin D concentrations, evidenced

by the panther chameleon (Furcifer pardalis) that will alter

its basking time depending on dietary intake of vitamin D

(Karsten et al., 2009). When given less access to dietary

vitamin D, the frequency and duration of basking behavior

significantly increases, showing particular preference for

UVB-generating light (Ferguson et al., 2003). Our findings

in leopard geckos similarly suggest that this crepuscular

species can increase circulating 25-hydroxyvitamin D3

concentrations when exposed to artificial lighting that

produces UVB radiation, even when maintained on a

Table 1. Estimated marginal means for 25-hydroxyvitamin D3

concentrations in leopard geckos exposed to and not exposed

to UVB light.

Parameter Group Mean 95% CI SE Min–Max

25 hydroxyvitamin D3 No UVB 49.7 33.7–65.6 7.0 12.0–81.0

UVB 79.5 64.9–94.0 6.4 33.0–170.0
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vitamin D3 deficient diet. It was interesting to note that the

25-hydroxyvitamin D concentrations in the control group

did not decrease; however, this was not unexpected as

decay (half-life) of this hormone over time has been found

to be 69.3 days and 83 days in rhinoceros iguanas (Cyclura

cornuta) and bearded dragons (Pogona vitticeps), respec-

tively (Ferguson et al., 2015; Oonincx et al., 2013).

Determining how a reptile acquires vitamin D, either

through the diet, UVB exposure, or a combination of both,

is important for making ‘‘best practice’’ recommendations

for that species in captivity. Historically, supplementation

of vitamin D for captive vertebrates has been through the

diet. However, it is possible to over supplement vitamin D

in captive vertebrates, causing hypervitaminosis D. Ani-

mals that develop hypervitaminosis D can develop soft-

tissue mineralization, particularly renal and aortic calcifi-

cation, leading to organ dysfunction and organ failure

(Wallach, 1996; Mader, 2005; Watson and Mitchell, 2014).

Ferguson et al. (1996) found that reproductively active

female panther chameleons had an increased mortality

when fed a high vitamin D diet (9.1 IU/g cholecalciferol).

In humans, over supplementation via intramuscular

injections (600,000 U of vitamin D) can result in nausea,

vomiting, anorexia, increased thirst and urination, weak-

ness, and altered sensorium (Pandita et al., 2012).

Comorbidities included chronic kidney disease, urinary

tract infection, diabetes mellitus, osteoarthritis, and hyper-

tension (Pandita et al., 2012). In comparison, the cutaneous

biosynthesis of vitamin D, which occurs through exposure

to natural sunlight or artificial ultraviolet radiation, seems

to provide a protected means of acquiring vitamin D

(Webb and Holick, 1988). Vitamin D is produced through

a series of interactions whereby 7-dehydrocholesterol (7-

DHC, provitamin D3) is photoconverted to previtamin D.

From here, there are several possible biochemical options

forward. When metabolic stores of circulating vitamin D

are diminished, previtamin D undergoes a thermochemical

change into vitamin D3, which, after passing through both

the liver and kidneys, becomes the metabolically active

1,25-dihydroxyvitamin D (1,25(OH)2D, calcitriol). When

the body has adequate circulating levels of vitamin D,

previtamin D3 is shunted down alternative pathways to

become biologically inert photoproducts such as tachys-

terol or lumisterol (Webb and Holick, 1988; Holick, 1990,

2007). These inactive byproducts can either be degraded or

recycled back to previtamin D3 for conversion to active

vitamin D3 based on need (Webb and Holick, 1988). To

date, there are no known studies describing hypervitamin-

osis D associated with photobiosynthesis.

Based on our current understanding of hypervitaminosis

D, it appears that the provision of UVB radiation, for those

species that can use it, is preferred over the sole provision

of dietary vitamin D until we perform the necessary studies

to determine appropriate dietary levels. However, there are

also negative side effects associated with UVB exposure

that should be considered to minimize the likelihood of

them occurring. In a preliminary study evaluating the

ability of leopard geckos to synthesize vitamin D3 following

UVB exposure, providing an unprotected (no shelter) 12 h

photoperiod with high concentrations of UVB resulted in

weekly episodes of ecdysis (Wangen et al., 2013). This

frequent skin shedding was compared to the erythema

(sunburn) noted in other species of vertebrates that receive

high doses of ultraviolet radiation. Excess unprotected

exposure has also been shown to negatively affect hatching

rates and survivorship in some species of amphibian

(Blaustein et al., 1994, 1998) and lead to ocular dysfunc-

tion, lethargy, and weight loss in a variety of vertebrate

taxa (Gerhman, 1994; Flamarique et al., 2000; Fris et al.,

2006; Gardiner et al., 2009). There is also some concern

that reports of squamous cell carcinoma in bearded

dragons, especially around the head, may be associated

with excessive ultraviolet radiation exposure (Hannon et

al., 2011). These findings, however, are likely compounded

by other negative extraneous environmental factors and a

particularly high output of ultraviolet radiation. This

highlights the need for careful selection of ultraviolet lamp

sources, appropriate light distance from the light source to

the basking location, the provision of shelter and a UVB

gradient, the amount of time ultraviolet exposure is

provided, and close monitoring of the animal to ensure

deleterious effects of irradiation do not occur (Ferguson et

al., 2002, 2010; Adkins et al., 2003; Baines et al., 2016).

Conclusions

Leopard geckos are a popular pet reptile, and nutritional

disease, especially NSHP, is a common finding in these

animals. The results of this study demonstrate that short-

term exposure to UVB radiation is sufficient to increase

circulating 25-hydroxyvitamin D3 concentrations in leopard

geckos. Because the prey species offered to leopard geckos

in captivity are naturally low in vitamin D (e.g., crickets,

mealworms), exposure to UVB may help offset dietary

deficiencies, or concerns about hypervitaminosis associated

with supplements. However, there remains much we still

need to learn about this subject. Prospective, longitudinal

studies are required to determine reference intervals for 25-

hydroxyvitamin D3 in leopard geckos, as well as how much

UVB exposure and dietary vitamin D are required to

achieve these concentrations. In addition, it is important for

us to determine the role vitamin D plays in the pathophys-

iology of NSHP in this species. Until further research is

done, the authors believe that leopard geckos should be

provided protected UVB exposure to ensure that they can

behaviorally control their vitamin D concentrations.
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